Что является первой вычислительной машиной. История вычислительной техники

Технические средства реализации информационных процессов

История развития ВТ имеет несколько периодов: механический, электромеханический и электронный.

Для проведения вычислений в Древнем Вавилоне (около 3 тыс. лет до н.э.), а затем в Древней Греции и Древнем Риме (IV век до н.э.) использовали счетные доски под названием абак . Доска абака представляла собой глиняную пластину с углублениями, в которые раскладывали камушки. В дальнейшем углубления были заменены проволокой с нанизанными косточками (прообраз счет).

В 17 веке в Европе ученые-математики (В. Шиккард (1623 ᴦ.) и Блез Паскаль (1642 ᴦ.), Г. Лейбниц (1671 ᴦ.)) изобретают механические машины , способные автоматически выполнять арифметические действия (прообраз арифмометра).

В первой трети 19 века английский математик Ч. Бэббидж разработал проект программируемого автоматического вычислительного механического устройства, известного как ʼʼаналитическая машинаʼʼ Бэббиджа. Меценат проекта графиня Ада Августа Лавлейс была программистом этой ʼʼаналитической машиныʼʼ.

Г. Холлерит в 1888 ᴦ. создал электромеханическую машину, которая состояла из перфоратора, сортировщика перфокарт и суммирующей машины, названной табулятором. Впервые эта машина использовалась в США при обработке результатов переписи населœения.

Скорость вычислений в механических и электромеханических машинах была ограничена, в связи с этим в 1930-х гᴦ. начались разработки электронных вычислительных машин (ЭВМ), элементной базой которых стала трехэлектродная вакуумная лампа.

В 1946 ᴦ. в университете ᴦ. Пенсильвания (США) была построена электронная вычислительная машина, получившая название UNIAK. Машина весила 30 т, занимала площадь 200 кв.м., содержала 18000 ламп. Программирование велось путем установки переключателœей и коммутации разъемов. В результате на создание и выполнение даже самой простой программы требовалось очень много времени. Сложности в программировании на UNIAK натолкнули Джона фон Неймана, бывшего консультантом проекта͵ на разработку новых принципов построения архитектуры ЭВМ.

В СССР первая ЭВМ была создана в 1948 ᴦ.

Историю развития ЭВМ принято рассматривать по поколениям.

Первое поколение (1946-1960) - ϶ᴛᴏ время становления архитектуры машин фон-неймановского типа, построенных на электронных лампах с быстродействием 10-20 тыс.оп/с. ЭВМ первого поколения были громоздкими и ненадежными. программные средства были представлены машинными языками.

В 1950 ᴦ. в СССР была запущена в эксплуатацию МЭСМ (малая электронная счетная машина), а еще через два года появилась большая электронно-счетная машина (10 тыс.оп/с).

Второе поколение (1960 – 1964) - ϶ᴛᴏ машины, построенные на транзисторах с быстродействием до сотен тысяч операций в секунду. Для организации внешней памяти стали использоваться магнитные барабаны, а для основной памяти – магнитные сердечники. В это же время были разработаны алгоритмические языки высокого уровня, как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины. Первой ЭВМ с отличительными чертами второго поколения была IBM 704.

Третье поколение (1964 – 1970) характеризуются тем, что вместо транзисторов стали использоваться интегральные схемы (ИС) и полупроводниковая память.

Большинство машин, относящихся к третьему поколению по своим особенностям, входили в состав серии (семейства) машин ʼʼSystem/360ʼʼ (аналог ЕС ЭВМ), выпущенной фирмой IBM в серединœе 60-х гᴦ. Машины этой серии имели единую архитектуру и были программно совместимыми.

В данный время в СССР появился первый суперкомпьютер БЭСМ 6, который имел производительность 1 млн. оп/с.

Четвертое поколение (1970 – 1980) - ϶ᴛᴏ машины, построенные на больших интегральных схемах (БИС). Такие схемы содержат до нескольких десятков тысяч элементов в кристалле. ЭВМ этого поколения выполняют десятки и сотни миллионов операций в секунду.

В 1971 ᴦ. появился первый в мире четырехразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, а еще через год - восьмиразрядный процессор Intel 8008. Создание микропроцессоров послужило основой для разработки персонального компьютера (ПК), ᴛ.ᴇ. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на работу одного пользователя.

1973 ᴦ. фирма Xerox создала первый прототип персонального компьютера.

1974 ᴦ. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800, для которого в конце 1975 ᴦ. Пол Ален и Билл Гейтс написали интерпретатор языка Бэйсик.

В августе 1981 ᴦ. фирма IBM выпустила компьютер IBM PC. В качестве основного микропроцессора использовали новейший тогда 16-разрядный микропроцессор Intel 8088. ПК был построен в соответствии с принципами открытой архитектуры. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами различных производителœей. Через один – два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-разрядных компьютеров.

Сегодня существует множество разновидностей ЭВМ, которые классифицируются: по элементной базе, принципам действия, стоимости, размерам, производительности, назначению и областям применения.

СуперЭВМ и большие ЭВМ (мэйнфреймы) – применяются для проведения сложных научных расчетов или для обработки больших потоков информации на крупных предприятиях. Οʜᴎ, как правило, являются главными компьютерами корпоративных вычислительных сетей.

Мини - и микро ЭВМ применяются для создания систем управления крупных и средних предприятий.

Персональные компьютеры предназначены для конечного пользователя. В свою очередь ПК подразделяют на настольные (desktop), портативные (notebook) и карманные (palmtop) модели.

История развития вычислительной техники - понятие и виды. Классификация и особенности категории "История развития вычислительной техники" 2017, 2018.

  • - История развития вычислительной техники

    Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета. Абак – счётная доска,... .


  • - История развития вычислительной техники

    История развития вычислительной техники уходит своими корнями далеко в прошлое. Еще в XIV в. Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства. Действующий образец построил в 1642 г. знаменитый французский физик, математик и инженер Блез Паскаль. Его... .


  • - КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

    1623г. Первая «считающая машина», созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами. 1644г. «Вычислитель» Блеза Паскаля – первая по настоящему популярная считающая машина,...

  • Министерство образования и науки Российской Федерации

    Федеральное агентство по образованию

    ГОУ ВПО «Уральский государственный экономический университет»

    Кафедра экономики и права

    Филиал УрГЭУ в г. Н. Тагил

    Контрольная работа

    по дисциплине:

    «Информатика»

    Вариант 8___

    Тема: «История развития средств вычислительной техники»

    Исполнитель:

    студент гр. 1ЭКИП

    Горбунова А.А.

    Преподаватель:

    Скороходов Б.А.

    Введение………………………………………………………………………………..3

    1 Этапы развития средств вычислительной техники………………………………..4

    2 Характеристика поколений ЭВМ…………………………………………………...9

    3 Роль средств вычислительной техники в жизни человека………………………13

    Заключение……………………………………………………………………………14

    Введение

    Знание истории развития вычислительной техники, является неотъемлемым компонентом профессиональной компетентности будущего специалиста в области информационных технологий. Первые шаги автоматизации умственного труда относятся именно к вычислительной активности человека, который уже на самых ранних этапах своей цивилизации начал использовать средства инструментального счета.

    При этом, следует иметь в виду, что хорошо зарекомендовавшие себя средства развития вычислительной техники используются человеком и в настоящее время для автоматизации различного рода вычислений.

    Автоматизированные системы являются неотъемлемой частью любого бизнеса и производства. Практически все управленческие и технологические процессы в той или иной степени используют средства вычислительной техники. Всего лишь один компьютер может заметно повысить эффективность управления предприятием, при этом не создавая дополнительных проблем. Сегодня персональные компьютеры устанавливают на каждом рабочем месте и уже, как правило, никто не сомневается в их необходимости. Значительные объемы средств вычислительной техники и их особая роль в функционировании любого предприятия ставят перед руководством целый ряд новых задач.

    В данной работе будет рассмотрена история развития средств вычислительной техники, которая поможет понять и углубиться в сущность и значение ЭВМ.

    1 Этапы развития средств вычислительной техники

    Существует несколько этапов развития средств вычислительной техники, которыми люди пользуются и в настоящее время.

    Ручной этап развития средств вычислительной техники.

    Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании различных частей тела, в первую очередь, пальцев рук и ног.

    Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти.

    Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов.

    Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Многовековой путь совершенствования абака привел к созданию счетного прибора законченной классической формы, используемого вплоть до эпохи расцвета клавишных настольных ЭВМ. Да еще и сегодня кое-где его можно встретить, помогающим в расчетных операциях. И только появление карманных электронных калькуляторов в 70-е годы нашего столетия создало реальную угрозу для дальнейшего использования русских, китайских и японских счетов - трех основных классических форм абака, сохранившихся до наших дней. При этом, последняя известная попытка усовершенствования русских счетов путем объединения их с таблицей умножения относится к 1921 г.

    Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Джоном Непером в начале XVII века явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Джон Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

    Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

    Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира.

    Механический этап развития вычислительной техники.

    Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда.

    Первая механическая машина была описана в 1623 году Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.

    Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения и вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов.

    В машине Блеза Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 году первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда.

    Первый арифмометр, позволяющий производить все четыре арифметических операции, был создан Готфридом Лейбницем в результате многолетнего труда. Венцом этой работы стал арифмометр Лейбница, позволяющий использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения.

    Особое место среди разработок механического этапа развития вычислительной техники занимают работы Чарльза Бэббиджа, с полным основанием считающегося родоначальником и идеологом современной вычислительной техники. Среди работ Бэббиджа явно просматриваются два основных направления: разностная и аналитическая вычислительные машины.

    Проект разностной машины был разработан в 20-х годах XIX века и предназначался для табулирования полиномиальных функций методом конечных разностей. Основным стимулом в данной работе была настоятельная необходимость в табулировании функций и проверке существующих математических таблиц, изобилующих ошибками.

    Второй проект Бэббиджа - аналитическая машина, использующая принцип программного управления и явившуюся предшественницей современных ЭВМ. Данный проект был предложен в 30-е годы XIX века, а в 1843 году Алой Лавлейс для машины Бэббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли.

    Чарльз Бэббидж в своей машине использовал механизм, аналогичный механизму ткацкого станка Жаккарда, использующему специальные управляющие перфокарты. По идее Бэббиджа управление должно осуществляться парой жакардовских механизмов с набором перфокарт в каждом.

    Бэббидж имел удивительно современные представления о вычислительных машинах, однако имевшиеся в его распоряжении технические средства намного отставали от его представлений.

    Электромеханический этап развития вычислительной техники.

    Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет. Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.

    Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

    Первый счетно-аналитический комплекс был создан в США Германом Холлеритом в 1887 году и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт, а также механизации бухучета и экономических задач. В 1897 году Холлерит организовал фирму, которая в дальнейшем стала называться IBM.

    Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов, из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

    Заключительный период (40-е годы XX века) электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

    Конрад Цузе явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэббиджа - в ней не предусматривалась условная передача управления. Также, в будущем, были разработаны модели Z-2 и Z-3.

    Последним крупным проектом релейной вычислительной техники следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 года в основном для решения экономических задач.

    Электронный этап развития вычислительной техники.

    В силу физико-технической природы релейная вычислительная техника не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

    Первой ЭВМ можно считать английскую машину Colossus, созданную в 1943 году при участии Алана Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием, однако была узкоспециализированной.

    Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 года. Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи.

    Еще до начала эксплуатации ENIAC Джона Моучли и Преспера Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.

    Компьютер EDSAC положил начало новому этапу развития вычислительной техники - первому поколению универсальных ЭВМ.

    2 Характеристика поколений ЭВМ

    Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

    Первое поколение ЭВМ 1950-1960-е годы

    Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки. В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

    Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

    В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа.

    ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

    Второе поколение ЭВМ: 1960-1970-е годы

    Логические схемы строились на дискретных полупроводниковых и магнитных элементах. В качестве конструктивно-технологической основы использовались схемы с печатным монтажом. Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

    Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

    В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

    Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

    В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

    Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина, созданная в 1951 году.

    В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

    Третье поколение ЭВМ: 1970-1980-е годы

    Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

    В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

    Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

    Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

    Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

    В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

    Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

    Четвертое поколение ЭВМ: 1980-1990-е годы

    Революционным событием в развитии компьютерных технологий четвертго поколения машин было создание больших и сверхбольших интегральных схем, микропроцессора и персонального компьютера.

    Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений.

    Пятое поколение ЭВМ: 1990-настоящее время

    Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

    Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

    Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

    Шестое и последующие поколения ЭВМ

    Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

    3 Роль средств вычислительной техники в жизни человека.

    Роль информатики в целом в современных условиях постоянно возрастает. Деятельность как отдельных людей, так и целых организаций все в большей степени зависит от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств. Внедрение компьютеров, современных средств переработки и передачи информации в различные индустрии послужило началом процесса, называемого информатизацией общества. Современное материальное производство и другие сферы деятельности все больше нуждаются в информационном обслуживании, переработке огромного количества информации. Информатизация на основе внедрения компьютерных и телекоммуникационных технологий является реакцией общества на потребность в существенном увеличении производительности труда в информационном секторе общественного производства, где сосредоточено более половины трудоспособного населения.

    Информационные технологии вошли во все сферы нашей жизни. Компьютер является средством повышения эффективности процесса обучения, участвует во всех видах человеческой деятельности, незаменим для социальной сферы. Информационные технологии - это аппаратно-программные средства, базирующиеся на использовании вычислительной техники, которые обеспечивают хранение и обработку образовательной информации, доставку ее обучаемому, интерактивное взаимодействие студента с преподавателем или педагогическим программным средством, а также тестирование знаний студента.

    Можно предположить, что эволюция технологии в общем и целом продолжает естественную эволюцию. Если освоение каменных орудий помогло сформироваться человеческому интеллекту, металлические повысили производительность физического труда (настолько, что отдельная прослойка общества освободилась для интеллектуальной деятельности), машины механизировали физический труд, то информационная технология призвана освободить человека от рутинного умственного труда, усилить его творческие возможности.

    Заключение

    Жить в XXI веке образованным человеком можно, только хорошо владея информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства.

    С помощью изучения истории развития средств вычислительной техники можно познать все строение и значение ЭВМ в жизни человека. Это поможет лучше в них разбираться и с легкостью воспринимать новые прогрессирующие технологии, ведь не нужно забывать о том, что компьютерные технологии прогрессируют, почти, каждый день и если не разобраться в строении машин, которые были много лет назад, трудно будет преодолеть нынешнее поколение.

    В представленной работе удалось показать с чего начиналось и чем заканчивается развитие средств вычислительной техники и какую важную роль играют они для людей в настоящее время.

    История развития средств инструментального счета позволяет лучше понять действие современных вычислительных машин. Как говорил Лейбниц: "Кто хочет ограничиться настоящим без знания прошлого, тот никогда не поймет настоящего." Поэтому изучение истории развития ВТ является важной составной частью информатики.

    Люди с древних времен использовали для счета различные приспособления. Первым таким "приспособлением" были собственные пальцы. Полное описание пальцевого счета составил в средневековой Европе ирландский монах Беда Достопочтенный (7 век н.э.). Различные приемы пальцевого счета использовались до 18 века.

    В качестве средств инструментального счета использовались веревки с узелками.

    Наиболее широкое распространение в древности получил абак, сведения о котором известны с V в до н.э. Числа в нем представлялись камешками, раскладываемые по столбцам. В древнем Риме камешки обозначались словом Calculus, отсюда произошли слова, обозначающие счет (английское calculate – считать).

    Счеты, широко использовавшиеся на Руси, по принципу действия похожи на абак.

    Необходимость использования различных устройств для счета объяснялись тем, что письменный счет был затруднен. Во-первых, это было связанно со сложной системой записи чисел, во-вторых, писать умели немногие, в-третьих, средства для записи (пергамент) были очень дороги. С распространением арабских цифр и изобретением бумаги (12-13 век) стал широко развиваться письменный счет, и абак стал не нужен.

    Первым устройством, механизирующий счет в привычном для нас понимании, стала счетная машинка, построенная в 1642 году французским ученым Блезом Паскалем. Она содержала набор вертикально расположенных колес с нанесенными на них цифрами 0-9. Если такое колесо совершало полный оборот, оно сцеплялось с соседним колесом и проворачивало его одно деление, обеспечивая перенос из одного разряда в другой. Такая машина могла складывать и вычитать числа и использовалась в конторе отца Паскаля для подсчета сумм собираемых налогов.

    Различные проекты и даже действующие образы механических счетных машин создавались и до машины Паскаля, но именно машина Паскаля получила широкую известность. Паскаль взял патент на свою машину, продал несколько десятков образцов; его машиной интересовались вельможи и даже короли; например, одна из машин была подарена шведской королеве Христине.

    В 1673г. немецкий философ и математик Готфрид Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Эта машина стала основой массовых счетных приборов - арифмометров. Выпуск механических счетных машин был налажен в США в 1887, в России в 1894. Но эти машины были ручными, то есть требовали постоянного участия человека. Они не автоматизировали, а лишь механизировала счет.

    Большое значение в истории вычислительной техники занимают попытки "заставить" технические устройства выполнять какие-либо действия без участия человека, автоматически.

    Большое развитие такие механические автоматы, построенные на основе часовых механизмов, получили в 17-18 веках. Особенно были известны автоматы французского механизма Жака де Вокансона, среди которых была игрушка-флейтист, внешне выглядевшая как обычный человек. Но это были всего лишь игрушки.

    Внедрение автоматизации в промышленное производство связывается с именем французского инженера Жаккара, который изобрел устройство управления ткацким станком на основе перфокарт – картонок с отверстиями. По-разному пробивая отверстия на перфокартах, можно было получать на станках ткани с разным переплетением нитей.

    Отцом вычислительной техники считается английский ученый 19 века Чарльз Бэббидж, который впервые предпринял попытку построить счетную машину, работающую по программе. Машина предназначалась для помощи Британском морскому ведомству в составлении мореходных таблиц. Бэббидж считал, что машина должна иметь устройство, где будут храниться числа, предназначенные для вычислений ("память"). Одновременно там же должны находиться команды о том, что с этими числами делать ("принцип хранимой программы"). Для выполнения операций над числами в машине должно быть специальное устройство, которое Беббидж назвал "мельницей", а в современных компьютерах ему соответствует АЛУ. Вводиться в машину числа должны были вручную, а выводиться на печатающее устройство ("устройства ввода/вывода"). И наконец, должно было быть устройство, управляющее работой всей машины ("УУ"). Машина Бэббиджа была механической и работала с числами, представленными в десятичной системе.

    Научные идеи Беббиджа увлекли дочь знаменитого английского поэта Джорджа Байрона – леди Аду Лавлейс. Она составила программы, по которым машина могла бы производить сложные математические расчеты. Многими понятиями, введенными Адой Лавлейс в описании тех первых в мире программ, в частности, понятием "цикл", широко пользуются современные программисты.

    Следующий важный шаг на пути автоматизации вычислений сделал примерно через 20 лет после смерти Беббиджа американец Герман Холлерит, который изобрел электромеханическую машину для вычислений с помощью перфокарт. Машина использовалась для обработки данных переписи населения. На перфокартах вручную пробивались отверстия в зависимости от ответов на вопросы переписи; сортировальная машина позволяла распределять карты на группы в зависимости от места пробитых отверстий, а табулятор подсчитывал число карт в каждой группе. Благодаря этой машине обработку результатов переписи населения Соединенных Штатов Америки 1890г удалось провести втрое быстрее предыдущей.

    В 1944 году в США под руководством Говарда Айкина была построена электромеханическая вычислительная машинка, известная как "Марк–1 ", а затем и "Марк–2 ". Эта машина была основана на реле. Поскольку реле имеют два устойчивых состояния, а идея отказаться от десятичной системы еще не приходила в голову конструкторам, то числа представлялись в двоично-десятичной системе: каждая десятичная цифра представлялась четырьмя двоичными и хранилась в группе их четырех реле. Скорость работы составляла около 4х операций в секунду. Тогда же было создано еще несколько релейных машин, в том числе советская релейная вычислительная машина РВМ–1, сконструированная в 1956г Бессоновым и успешно работавшая до 1966г.

    За точку отсчета эры ЭВМ обычно принимают 15 февраля 1946г, когда ученые Пенсильванского университета ввели в строй первый в мире компьютер на электронных лампах – ЭНИАК. Первым применением ЭНИАК было решение задач для сверхсекретного проекта атомной бомбы, да и затем он использовался в основном в военных целях. В ЭНИАК не существовало программы, хранимой в памяти; "программирование" осуществлялось с помощью установки проводов-перемычек между отдельными элементами.

    С 1944 года в работе над созданием ЭВМ принимал участие Джон фон Нейман. В 1946 году была опубликована его статья, в которой были сформулировали два важнейших принципа, лежащие в основы всех современных ЭВМ: использование двоичной системы счисления и принцип хранимой программы.

    Появились ЭВМ и в СССР. В 1952 г под руководством академика Лебедева была создана самая быстродействующая ЭВМ в Европе – БЭСМ, в 1953г начат выпуск серийной ЭВМ "Стрела". Серийные советские машины были на уровне лучших мировых образцов.

    Началось бурное развитие ВТ.

    Первая вычислительная машина на электронных лампах (ЭНИАК) насчитывала около 20 тыс. электронных ламп, размещалась в огромном зале, потребляла десятки кВт электроэнергии и была очень ненадежна в работе – фактически работала только небольшие промежутки времени между ремонтами.

    С тех пор развитие ВТ прошло огромный путь. Выделяют несколько поколений ЭВМ. Под поколением понимается определенный этап развития аппаратуры, характеризующийся ее параметрами, технологией изготовления составных частей и т.д.

    1 поколение – начало 50х годов (БЭСМ, Стрела, Урал). Основаны на электронных лампах. Большая потребляемая мощность, малая надежность, низкое быстродействие (2000 оп/с), малый объем памяти (несколько килобайт); отсутствовали средства организации вычислительных процессов, оператор работал непосредственно за пультом.

    2 поколение – конец 50х годов (Минск – 2, Раздан, Наири). Полупроводниковые элементы, печатный монтаж, быстродействие (50-60 тыс. оп/с); появление внешних магнитных запоминающих устройств, появились примитивные операционные системы и трансляторы с алгоритмических языков.

    3 поколение – середина 60х годов. Построены на основы интегральных микросхем, использовались стандартные электронные блоки; быстродействие до 1,5 млн. оп/с; появились развитые программные средства.

    4 поколение – построены на основе микропроцессоров. Компьютеры специализируются, появляются их различные типы: супер ЭВМ – для решения очень сложных вычислительных задач; мэйнфреймы – для решения экономических и расчетных задач в рамках предприятия, ПК – для индивидуальной работы пользования. Сейчас ПК занимают преобладающую часть рынка компьютеров, а их возможности в миллионы раз превосходят возможности первых ЭВМ.

    Первый ПК Altair 8800 появился в 1975г в фирме MITS, однако возможности его были весьма ограничены, и коренного перелома в использовании компьютеров не произошло. Революция в индустрии ПК была совершена двумя другими фирмами – IBM и Apple Computer, соперничество которых способствовало бурному развитию высоких технологий, улучшению технических и пользовательских качеств ПК. В результате этого состязания компьютер превратился в неотъемлемую часть повседневной жизни.

    История фирмы Apple начался в 1976г, когда в гараже города Лос–Альмос штата Калифорния Стивен Джобс и Стивен Возняк (обоим было чуть за 20) собрали свой первый ПК. Однако настоящий успех пришел к фирме благодаря выпуску компьютера Apple–II, который был создан на основе микропроцессора фирмы Motorolla, внешним видом напоминал обычный бытовой прибор, а по цене был доступен рядовому американцу.

    Фирма IBM родилась в 1914 году и специализировалась на выпуске канцелярских товаров пишущих машинок. В пятидесятые годы основатель фирмы Томас Уотсон переориентировал ее на выпуск больших ЭВМ. В области ПК фирма вначале заняла выжидательную позицию. Бешенный успех Apple насторожил гиганта, и в кратчайшие сроки был создан первый IBM PC, представленный в 1981г. Используя свои огромные ресурсы, корпорация буквально наводнила рынок своими ПК, ориентируясь на самую емкую сферу их применения – деловой мир. IBM PC был основан на новейшем микропроцессоре фирмами Intel, позволившими значительно расширить возможности нового компьютера.

    Чтобы завоевать рынок, IBM впервые использовала принцип "открытой архитектуры". IBM PC не изготавливался как единое целое, а собирался из отдельных модулей. Любая фирма могла разработать устройство, совместимое с IBM PC. Это принесло IBM огромный коммерческий успех. Но в то же время на рынке стало появляться множество компьютеров – точных копий IBM PC – так называемых клонов. На появление "двойников" фирма ответила резким снижением цен и появлении новых моделей.

    В ответ на это фирма Apple создала Apple Macintosh, снабженный мышкой и имеющий высококачественный графический дисплей, а также впервые оснащенный микрофоном и генератором звука. А главное – имелось удобное и легкое в освещении ПО. Мас поступил в продажу и имел определенный успех, но вернуть лидерство на рынке ПК фирме Apple не удалось.

    Стремясь приблизиться по удобству использования к компьютерам Apple, фирма IBM стимулировала разработку современного ПО. Огромную роль здесь сыграло создание фирмой Microsoft OC Windows"95.

    С тех пор программное обеспечение становиться все более удобным и понятием. ПК оснащаются новыми устройствами и из прибора для профессиональной деятельности становятся "центрами цифровых развлечений", объединяя в себе функции различных бытовых приборов.

    Лекция № 10. ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    1.1. НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета.

    Доска разделялась на бороздки. Одна бороздка соответствовала единицам, другая – десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. В странах Дальнего Востока был распространён китайский аналог абака – суан-пан (в основе счета лежала не десятка, а пятерка), в России – счёты .

    Абак

    Суан-пан. Положено 1930

    Счеты. Положено 401,28

    Первой дошедшей до нас попыткой решить задачу по созданию машины умеющей складывать многоразрядные целые числа был эскиз 13-разрядного суммирующего устройства разработанный Леонардо да Винчи около 1500 г.

    В 1642 году Блез Паскаль изобрел устройство, механически выполняющее сложение чисел. Ознакомившись с трудами Паскаля и изучив его арифметическую машину, Готфрид Вильгельм Лейбниц внес в нее значительные усовершенствования, и в 1673 году сконструировал арифмометр, позволяющий механически выполнять четыре арифметических операции. Начиная с 19 века, арифмометры получили очень широкое распространение и применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала специальная профессия- счетчик.

    Несмотря на явный прогресс по сравнению с абаком и подобными ему приспособлениями для ручного счета, данные механические вычислительные устройства требовали постоянного участия человека в процессе вычислений. Человек, производя вычисления на таком устройстве, сам управляет его работой, определяет последовательность выполняемых операций.

    Мечтой изобретателей вычислительной техники было создание считающего автомата, который бы без вмешательства человека производил расчеты по заранее составленной программе.

    В первой половине 19 века английский математик Чарльз Бэббидж попытался создать универсальное вычислительное устройство – Аналитическую машину , которая должна была выполнять арифметические операции без участия человека. В Аналитическую машину были заложены принципы, ставшие фундаментальными для вычислительной техники, и были предусмотрены все основные компоненты, имеющиеся в современном компьютере. Аналитическая машина Бэббиджа должна была состоять из следующих частей:

    1. «Фабрика» – устройство, в котором производиться все операции по обработке всех видов данных (АЛУ).

    2. «Контора» – устройство, обеспечивающие организацию выполнения программы обработки данных и согласованную работу всех узлов машины в ходе этого процесса (УУ).

    3. «Склад» – устройство, предназначенное для хранения исходных данных, промежуточных величин и результатов обработки данных (ЗУ, или просто память).

    4. Устройства, способные преобразовывать данные в форму, доступную компьютеру (кодирование). Устройства ввода.

    5. Устройства, способные преобразовывать результаты обработки данных в форму, понятную человеку. Устройства вывода.

    В окончательном варианте машины у нее было три устройства ввода с перфокарт, с которых считывались программа и данные, подлежащие обработке.

    Бэббидж не смог довести работу до конца - это оказалось слишком сложно на основе механической техники того времени. Однако он разработал основные идеи, и в 1943 году американец Говард Эйкен на основе уже техники 20 века – электромеханических реле – смог построить на одном из предприятий фирмы IBM такую машину под названием «Марк-1». Для представления чисел в ней были использованы механические элементы (счетные колеса), для управления – электромеханические.

    1.2. НАЧАЛО СОВРЕМЕННОЙ ИСТОРИИ ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

    Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли «принципы фон Неймана». Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов - принцип хранимой программы - требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC ) была построена в Великобритании в 1949 г.

    В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот «мир» был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители - США и Япония - и сегодня разрабатывают и производят в режиме секретности).

    Первая отечественная ЭВМ - МЭСМ («малая электронно-счетная машина») -была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 («большая электронно-счетная машина, 6-я модель»), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий - «Минск», «Урал», М-20, «Мир» и другие.

    С началом серийного выпуска ЭВМ начали условно делить по поколениям; соответствующая классификация изложена ниже.

    1.3. ПОКОЛЕНИЯ ЭВМ

    В истории вычислительной техники существует своеобразная периодизация ЭВМ по поколениям. В ее основу первоначально был положен физико-технологический принцип: машину относят к тому или иному поколению в зависимости от используемых в ней физических элементов или технологии их изготовления. Границы поколений во времени размыты, так как в одно и то же время выпускались машины совершенно разного уровня. Когда приводят даты, относящиеся к поколениям, то скорее всего имеют в виду период промышленного производства; проектирование велось существенно раньше, а встретить в эксплуатации весьма экзотические устройства можно и сегодня.

    В настоящее время физико-технологический принцип не является единственным при определении принадлежности той или иной ЭВМ к поколению. Следует считаться и с уровнем программного обеспечения, с быстродействием, другими факторами, основные из которых сведены в прилагаемую табл. 4.1.

    Следует понимать, что разделение ЭВМ по поколениям весьма относительно. Первые ЭВМ, выпускавшиеся до начала 50-х годов, были «штучными» изделиями, на которых отрабатывались основные принципы; нет особых оснований относить их к какому-либо поколению. Нет единодушия и при определении признаков пятого поколения. В середине 80-х годов считалось, что основной признак этого (будущего) поколения - полновесная реализация принципов искусственного интеллекта . Эта задача оказалась значительно сложнее, чем виделось в то время, и ряд специалистов снижают планку требований к этому этапу (и даже утверждают, что он уже состоялся). В истории науки есть аналоги этого явления: так, после успешного запуска первых атомных электростанций в середине 50-х годов ученые объявили, что запуск многократно более мощных, дающих дешевую энергию, экологически безопасных термоядерных станций, вот-вот произойдет; однако, они недооценили гигантские трудности на этом пути,так как термоядерных электростанций нет и по сей день.

    В то же время среди машин четвертого поколения разница чрезвычайно велика, и поэтому в табл. 4.1 соответствующая колонка разделена на на две: А и Б. Указанные в верхней строчке даты соответствуют первым годам выпуска ЭВМ. Многие понятия, отраженные в таблице, будут обсуждаться в последующих разделах учебника; здесь ограничимся кратким комментарием.

    Чем младше поколение, тем отчетливее классификационные признаки. ЭВМ первого, второго и третьего поколений сегодня - в лучшем случае музейные экспонаты.

    Какие компьютеры относятся в первому поколению?

    К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы . Эти компьютеры были огромными, неудобными и слишком дорогими машинами , которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

    Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

    Быстродействие порядка 10-20 тысяч операций в секунду.

    Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности математического обеспечения.

    Программы для этих машин писались на языке конкретной машины . Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

    Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

    Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

    Отечественные машины первого поколения: МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.

    Какие компьютеры относятся ко второму поколению?

    Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-65 гг. Характеризуются использованием в них как электронных ламп , так и дискретных транзисторных логических элементов . Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски .

    Быстродействие - до сотен тысяч операций в секунду, ёмкость памяти - до нескольких десятков тысяч слов.

    Появились так называемые языки высокого уровня , средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде .

    Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами , переводят программу с языка высокого уровня на машинный язык.

    Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы , управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

    Таким образом, операционная система является программным расширением устройства управления компьютера .

    Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

    Машинам второго поколения была свойственна программная несовместимость , которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

    В чем особенности компьютеров третьего поколения?

    Машины третьего поколения созданы примерно после 60-x годов. Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда "поколение" начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры.

    Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

    Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

    Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

    Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

    Что характерно для машин четвёртого поколения?

    Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года.

    Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвёртого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

    В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой ёмкостью в десятки мегабайт.

    C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, ёмкость оперативной памяти порядка 1 - 64 Мбайт.

    Для них характерны:

    • применение персональных компьютеров;
    • телекоммуникационная обработка данных;
    • компьютерные сети;
    • широкое применение систем управления базами данных;
    • элементы интеллектуального поведения систем обработки данных и устройств.

    Какими должны быть компьютеры пятого поколения?

    Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции , использования оптоэлектронных принципов (лазеры , голография ).

    Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

    В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний .

    Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс" . Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

    Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

    Поколения ЭВМ

    Показатель

    Поколения ЭВМ

    Первое

    1951-1954

    Второе

    1958-I960

    Третье

    1965-1966

    Четвертое

    Пятое

    1976-1979

    1985-?

    Элементная база процессора

    Электронные

    лампы

    Транзисторы

    Интграль-ные схемы

    (ИС)

    Большие ИС (БИС)

    СвербольшиеИС

    (СБИС)

    Оптоэлек-троника

    Криоэлек-троника

    Элементная база ОЗУ

    Электронно-лучевые трубки

    Феррито-вые сердечники

    Ферритовые

    сердечники

    БИС

    СБИС

    СБИС

    Максмальная емкость ОЗУ, байт

    10 2

    10 1

    10 4

    10 5

    10 7

    10 8 (?)

    Максимальное быстродействие процессора (оп/с)

    10 4

    10 6

    10 7

    10 8

    10 9

    Многопро-цессорность

    10 12 ,

    Многопро-цессорность

    Языки программирования

    Машинный код

    Ассемблер

    Процедурные языки высокого уровня (ЯВУ)

    Новые

    процедурные ЯВУ

    Непроце-дурные ЯВУ

    Новые непрцедур-ные ЯВУ

    Средства связи пользователя с ЭВМ

    Пульт управления и перфокарты

    Перфокарты и перфоленты

    Алфавитно- цифровой терминал

    Монохром- ный графиче- ский дисплей, клавиатура

    Цветной + графический дисплей, клавиатура, «мышь» и др.

    Глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

    Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка , механический арифмометр, электронный компьютер . Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

    Ранние приспособления и устройства для счёта

    Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы , которые стали, таким образом, одним из первых устройств для количественного определения массы .

    Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

    Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

    С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм , обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

    «Считающие часы» Вильгельма Шиккарда

    За этим последовали машины Блеза Паскаля («Паскалина », 1642 г.) и Готфрида Вильгельма Лейбница .

    ANITA Mark VIII, 1961 год

    В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве .

    Появление аналоговых вычислителей в предвоенные годы

    Основная статья: История аналоговых вычислительных машин

    Дифференциальный анализатор, Кембридж, 1938 год

    Первые электромеханические цифровые компьютеры

    Z-серия Конрада Цузе

    Репродукция компьютера Zuse Z1 в Музее техники, Берлин

    Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 - первый компьютер с памятью на магнитных носителях.

    Британский Colossus

    В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

    Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

    Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

    Применение полупроводников позволило улучшить не только центральный процессор , но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed ) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable ) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

    Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам . Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.